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1 Preliminaries

Throughout this paper, K stands for a complete non-Archimedean valued field whose
valuation is non-trivial. By a seminorm, on a vector space E over K, we mean a
non-Archimedean seminorm. Also by a locally convex space we will mean a non-
Archimedean locally convex space over K (see [12] and [13]). For E a locally convex
space, we denote by cs(F) the collection of all continuous seminorms on E and by
E' the topological dual of E. For a zero-dimensional Hausdorff topological space X,
BoX is the Banachewski compactification of X, Cy(X) the space of all continuous
K-valued functions on X and C,.(X) the space of all f € C,(X) whose range is
relatively compact. Every f € Cp.(X) has a continuous extension f% to all of 3, X.
For f € KX and A C X, we define

[flla = sup{|f(2)| : z € A} and |Ifl|=Iflx.

By AP e will denote the closure of A in §,X.

Next we will recall the definition of the strict topology 8 on Cp(X) which was given
in [5]. Let Q be the family of all compact subsets of 8,X which are disjoint from
X. For Z € 9, let Cz be the set of all b € C,.(X) for which A% vanishes on Z.
We denote by 3z the locally convex topology on C,(X) generated by the seminorms
Ph, h € Cz, where px(f) = ||hf||. The inductive limit of the topologies 8z, Z € 1,
is the strict topology 8. As it is shown in [7], Theorem 2.2, an absolutely convex
subset W of Cy(X) is a Bz-neighborhood of zero iff, for each r > 0, there exist a

clopen subset A of X, with AP* disjoint from Z, and ¢ > 0 such that
{feC(X): Ifllage llfll <} W.

Monna and Springer initiated in [11] non-Archimedean integration. In [13] and [14],
van Rooij and Schikhof developed a non-Archimedean integration theory for scalar
valued measures. Some results on measures with values in Banach spaces were given
in [1], [2] and [3]. In this paper we will study measures with values in a locally convex
space as well as integrals of scalar valued functions with respect to such measures.
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2 Vector Measures

Let R be a separating algebra of subsets of a non-empty set X, i.e. R is a family of
subsets of X with the following properties :

1. XeRand,if A,BeR,then AUB, AN B, A\ B are also in R.

2. If z,y are distinct elements of X, then there exists a member of R containing
x but not y.

We will call the members of R measurable sets. Clearly R is a base for a Hausdorff
zero-dimensional topology 7= on X.

For a net (V5) of subsets of X we will write V5 | 0 if it is decreasing and [ Vs = 0.
Similarly we will write V;, | 0 for a sequence (V},) of sets which decreases to the
empty set.

Let now £ be a Hausdorff locally convex space. We denote by M (R, E) the space
of all bounded finitely-additive measures m : R — E. For m € M(R,E) and
p € cs(E), we define

mp: R —= R, my(A4) =sup{p(m(V)):V e R,V C A}
and ||m||, = mp(X). We also define
Nmp: X =R, Npyp(z)=inf{m,(V):z€V e R}.
An element m of M(R, E) is called :
1. o-additive if m(V,,) — 0 if V, | 0.
2. 7-additive if m(V;) — 0 if Vs | 0.

Let M,(R, E) (resp. M.(R,E)) be the space of all o-additive (resp. 7-additive)
members of M (R, E).

Theorem 2.1 Let m € M(R,E). Then
1. m is T-additive iff, for all p € cs(E), we have that my(Vs) — 0 when Vj | 0.
2. m is o-additive iff, for all p € cs(E), we have that m,(V;,) — 0 when V;, | 0.

Proof : (1). Clearly the condition is sufficient. Conversely, assume that m is 7-
additive but the condition is not satisfied. Then there exist a p € cs(E), an € > 0
and a net (V)sea of measurable sets which decreases to the empty set such that
mp(Vs) > € for all 6.

Claim : For each § € A, there exist v > § and a measurable set A such that
V, C A C Vs and p(m(A)) > e. Indeed, there exists B C V5 with p(m(B)) > e. For
each vy € A, set Zy = BNV, W, =V, \ Z,. Then W, | 0. Since m is T-additive,
there exists v > & such that p(m(W,)) < e. The sets B and W, are disjoint. If
A=W,UB, then V, C AC V; and

p(m(A)) = p(m(Wy) + m(B)) = p(m(B)) > ¢,
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which proves the claim.

Let now F be the family of all measurable sets A such that there are v > § with
V, € AC Vs and p(m(A)) > e. Since F | @, we arrived at a contradiction. This
proves (1).

(2). The proof is analogous to that of (1).

Theorem 2.2 Let m € M- (R, E) and let (V;);er be a family of measurable sets. If
p € cs(E), then for each measurable subset V' of |J;c; Vi, we have that

mp(V) < supmy (V).
2
Proof :  For each finite subset § of I, let Wg = J;cgVi. Then VO\W§ | 0. If

mp(V) > 0, there exists a finite subset S of I such that m,(VWE) < my(V).
Now

myp(V) = max{mp(VNWs), m,(VNWE)}
= mp(VNWg) < my(Wg) = measxmp(vi).

Corollary 2.3 Letm € M. (R,E), p <€ ¢cs(E) and V € R. Then
mp(V) = sup Nep(x).
zeV

Proof : Clearly my(V) > a = sup,cy Nmp(z). On the other hand, if € > 0, then
for each = € V there exists a measurable set V,, with z € V, C V, such that
mp(Vz) < Npp(z) +€ < a+e Since V = J, oy Vz, we have that

mp(V) < supmy,(V;) < a+e,
zeV

and the result follows as € > 0 was arbitrary.

Theorem 2.4 Let m € M,(R, E) and let (V},) be a sequence of measurable sets. If
V € R is contained in |JVy,, then my(V) < sup, mp(Vy).

Proof :  Let Wy, = |Ji-; Vk. Suppose that m,(V) > 0. Since VW< | 0, there
exists an n such that my(V N WE) < m,(V). Now

mp(V) = max{my,(VNWY), mx(VNW,)}
= mp(V N W) <mp(W,) = 1?55)(””7‘13(%:)-
Theorem 2.5 Ifm € M(R,E) and p € cs(E), then Ny, , is upper semicontinuous.

Proof : Leta>0and V = {& : Np,(z) < a}. Forz € V, there exists a measurable
set A containing x and such that m,(A) < . Now z € A C V and so V is open.

Theorem 2.6 Let m € M.(R,E), p € cs(E) and € > 0. Then the set
Xoe = {& 1 N plx) 26}

18 TR -compact.
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Proof : Let (V;)ier be a family of measurable sets covering X, = Y. Since Ny,
is upper semicontinuous, the set ¥ is closed. For each finite subset S of I, let
Ws = {J;eg Vi- Consider the family F of all measurable sets of the form [Wg U ¥4
where V' is a measurable set disjoint from ¥ and S a finite subset of J. Then F is
downwards directed and (| JF = (. Since m is 7-additive, there are S and V such
that m,([Ws U V]) < e. But then [Ws U V] C Y, and thus Y ¢ Wg UV, which
implies that ¥ € Wg. This completes the proof.

Definition 2.7 A subset G of X is said to be a support set of an m € M(R, E) if
m(V) = 0 for each measurable set V disjoint from G.

Theorem 2.8 Let m € M, (R, E). Then the set

supp(m) = U 125 W] = 0}
pEes(E)

15 the smallest of all closed support sets of m.

Proof : 1f V' is a measurable set disjoint from supp(m), then for each p € cs(E) we
have

p(m(V)) < mp(V) = P N p(z) =0,

which proves that supp(m) is a support set of m since E is Hausdorff. On the other
hand, let F' be a closed support set of m. Given z € F°, there exists V € R with
z €V C F° Now, for each p € cs(E) and y € V, we have that Ny, 5(y) < m,V) =0

and so the set
B = U {22 Nuwpl) & 0}
pEcs(E)

does not intersect V, which implies that z ¢ B = supp(m). Thus supp(m) C F and
the result follows.

3 A Universal Measure

Let R be a separating algebra of subsets of X and let S(R) be the vector space of
all K-valued R-simple functions on X. Let

X:R—=S8R), A~ xa.
Let E be a Hausdorff locally convex space. Every m € M(R, E) induces a linear

map
m:S(R)— E, m (Z )\kXVk) - Z)\km(Vk)-
k=1

k=1
On S(R) we consider the locally convex topologies ¢, ¢, ¢, defined as follows :

1. ¢ is the weakest locally convex topology for which, for each Hausdorff locally
convex space £ and each m € M(R, E), the map 7 : S(R) — E is continuous.
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2. ¢ is the weakest locally convex topology for which, for each Hausdorff locally
convex space E and each m € M, (R, E), the map 71 : S(R) — E is continuous.

3. ¢, is the weakest locally convex topology for which, for each Hausdorff locally
convex space E and each m € M- (R, E), the map 7 : S(R) — E is continuous.

Clearly ¢, C ¢y C ¢.

Lemma 3.1 The topology ¢, is Hausdorff.

Proof: Every z € X defines a 7-additive measure
mgy: R =K, mg(4)=xa(z).

Let g€ S(R), g # 0 and let g(x) # 0. Let 0 < € < |g(z)|. The set
{h € S(R) : [z ()| = [I(x)] < €}

is a ¢r-neighborhood of zero not containing g.

Theorem 3.2 If F = (S(R),p), where p = ¢, ¢ or ¢, then x : R — F is a
member of M(R, F), M;(R,F) or M.(R, F), respectively.

Proof :  Assume that F = (S(R), ¢,). Clearly y is finitely additive. Let E be a
Hausdorff locally convex space and let m € M, (R, E), p € cs(E). Let

W ={se E:p(s) <1}.
Since m € M,(R, E), there exists A € K such that m(R) Cc AW. If
D={ge S(R):1m(g) € W},

then x(R) C AD, which proves that x : R — F is bounded. If (V;) is a net of
measurable sets with Vs | 0, then m(V3) — 0, and so m(Vs) € W eventually, which
implies that xv; € D eventually. Thus x € M, (R, F). The proofs for the cases of ¢
and ¢, are analogous.

Theorem 3.3 Let E be a Hausdor{f locally convex space. Then :

1. The map m — 1, from M(R, E) to the space L ((S(R), ¢), E), of all contin-
uous linear maps from (S(R),®) to E, is an algebraic isomorphism.

2. The map m — 1, from M,(R,E) to the space L((S(R), ¢,), E), is an alge-
braic isomorphism.

3. The map m — 1h, from M.(R, FE) to the space L((S(R), ¢-), E), is an alge-
braic isomorphism.

65



66 Katsaras

Proof : (1) By the definition of ¢, each /1 is continuous. On the other hand,
let u: (S(R,),¢) — E be a continuous linear map and take m = wo y. Then
m € M(R, E) and i = u. The proofs of (2) and (3) are analogous.

Since, for every Hausdorff locally convex space E, every measure m : R — E
is of the form m = w o x, for some ¢-continuous linear map u from S(R) to E, we
will refer to the measure x : R — (S(R),#) as a universal measure. Taking K in
place of £ and identifying each scalar measure 4 on R by the corresponding linear
functional /i, we get the following

Theorem 3.4 The spaces M(R) = M(R,K), M;(R) and M,(R) are algebraically
isomorphic with the spaces (S(R),¢), (S(R), ds)" and (S(R), ¢.), respectively.

Theorem 3.5 On the space S(R), the topology ¢ is coarser than the topology T, of
uniform convergence.

Proof : Let E be a Hausdorff locally convex space and let m € M (R, E). It suffices
to show that m : (S(R), ™) — E is continuous. Indeed, let p € cs(E). There exists
r > 0 such that p(m(A4)) <r for all A € R. Now, for

V={geSR): gl <1/r},

we have that p(/(g)) < 1forall g€ V. Indeed,let g V, g = > ho1 kXA, where
Ay, ..., A, are pairwise disjoint sets . Then |A\y| < 1/7 and so

p((g)) = p(Y_ Mem(Ar)) < max A| - p(m(4))) < 1.
k=1

This completes the proof.

Theorem 3.6 ¢ is the finest of all Hausdorff locally convex topologies p on S (R)
such that, for F = (S(R), p), the map x : R — F is in M(R, F). Analogous results
hold for ¢, and ¢-.

Proof : Let p be a Hausdorff locally convex topology on S(R) such that y : R —
(S(R), p) is a bounded finitely additive measure. By the definition of ¢ , the linear
map

X : (8(R),¢) — (S(R),p)
Is continuous. Since ¥ is the identity map, it follows that ¢ is finer that p. Thus the
result holds for ¢. Analogous are the proofs for ¢, and ¢,.

Corollary 3.7 On S(R) the topology ¢ coincides with the topology 7, of uniform
CONVETPENCE.

Proof : It follows from Theorems 3.5 and 3.6 since x : R — (S(R), 7,) is a bounded
finitely-additive measure.

Let 0 = o(M(R),S(R)). For a o-bounded subset H of M(R), we denote by
H; the set H equipped with the topology induced by o. Let Cy(H,) be the space
of all bounded continuous K-valued functions on H, endowed with the sup norm
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topology. For A € R, the function m — m(A4), m € H, is o-continuous. Also this
function is bounded because H is o-bounded. Hence we get a map

p=py:R—=C(Hy), <p(A),m>=m(A).
Theorem 3.8 For a subset H of M(R), the following are equivalent :
1. H s ¢p-equicontinuous.
2. H is o-bounded and the map p=pg: R — F =Cy(H,) isin M(R, F).

Proof : (1) = (2). Since H is ¢-equicontinuous, it is o-bounded. Clearly u is
finitely additive. We need to show that u(R) is a norm bounded subset of Cj(H,).
Indeed, let V' be a ¢-neighborhood of zero in S(R) such that H < V°. Since
X R — (S(R),¢) is a bounded measure, there exists a non-zero element A of K
such that x4 € AV for all A € R. Thus, for A € R and m € H, we have that
|m(A)| < |A| and hence |[u(A)|| < |A|. Thus, supexr ||p(4)]] < |A|, which proves
that p € M(R, F).

(2) = (1). Since p: R — F = Cy(H,) is a bounded finitely-additive measure, it
follows that i : (S(R),$) — F is continuous. Thus, there exists a ¢-neighborhood
V' of zero such that [|(g)|| < 1forall g € V. Then H C V° and the result follows.

Theorem 3.9 For a subset H of M,(R), the following are equivalent :
1. H is ¢s-equicontinuous.
2. H is o-bounded and the map p= pug: R — Cy(H,) is a o-additive measure.
3. H is o-bounded and uniformly o-additive.
4. SUppep |Im|| < oo and H is uniformly o-additive.

Proof : (1) = (2). Since ¢, C ¢, it follows that H is ¢-equicontinuous and
thus (by the preceding Theorem) p : R — Cy(H,) is a bounded finitely-additive
measure. We need to show that p is o-additive. So let (V},) be a sequence of mea-
surable sets which decreases to the empty set. Since H is ¢,-equicontinuous, there
exists a ¢ -neighborhood V of zero in S(R) such that H C V° Let A # 0. As
X : R — (§(R),¢s) is a o-additive measure, there exists n, such that yy, € AV,
for all n > n,. Thus, for n > n, and m € H, we have |m(V,)| < |A| and thus
lu(An|l < |Al, which proves that p is o-additive.

(2) = (3). Let V,, | 0. Since u(Vy,) — 0 in Cy(H,), given € > 0, there exists n, such
that ||u(Va)|| < € for all n > n,. Thus, for n > n,, we have that |m(V;,| < € for all
m € H, which proves that H is uniformly o-additive.

(3) = (2). It is trivial.

(2) = (1). Since pp = pyg : R — Cy(H,) is a o-additive measure, the map
g : (S(R),¢s) — F is continuous. Hence, there exists a ¢,-neighborhood V of
zero such that |[i(g)|| €1 for all g € V. But then H C V°.

(1) = (4). Since ¢, is coarser than the topology 7, of uniform convergence, it fol-
lows that H is 7,-equicontinuous and hence sup,,c g ||m|| < co. Also H is uniformly
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o-additive since (1) implies (3). This clearly completes the proof.

The proof of the next Theorem is analogous to the one of the preceding Theorem.

Theorem 3.10 For a subset H of M, (R), the following are equivalent :
1. H is ¢r-equicontinuous.
2. H is o-bounded and the map pu = pg: R — Cy(H,) is a T-additive measure.
3. H is o-bounded and uniformly T-additive.

4. SUPcp lm|| < co and H is uniformly T-additive.

Theorem 3.11 ¢, is the weakest of all locally convez topologies p on S(R) such
that, for each non-Archimedean Banach space E and each m € M,(R, E), the map
m: (S(R),p) — E is continuous.

Proof : Let 7, be the weakest of all locally convex topologies p on S(R) having the
property mentioned in the Theorem. Clearly 7, is coarser than ¢,. On the other
hand, let W be a polar ¢,-neighborhood of zero and let H be the polar of W in
M. (R). By the preceding Theorem,

U=pg R :— FE = Cy(Hy,)

is a 7-additive measure. If V' is the unit ball of E, then (2)~1(V) ia a 7,-neighborhood
of zero. Since (2)71(V) C H® = W, the result clearly follows.

4 Integration

Throughout the rest of the paper we will assume that F is a complete Hausdorff
locally convex space (unless it is stated otherwise ) and R a separating algebra
of subsets of a non-empty set X. Let m € M(R,E) and A € R. Let D4 be the
family of all @ = {4y, 4s,...,An;21,%3,..., 2}, where {41, 4s,...,As} is a fi-
nite R-partition of A and z; € A;. We make Dy into a directed set by defin-
ing oy > ay iff the partition of 4 in oy is a refinement of the one in as. For
a= {AI,AQ,...,An;xl,xg,...,xn} € D4 and f € K%, we define

walfym) =Y f(zk)m(A).
k=1

Ifthe limywy(f, m) exists in E, we will say that f is m-integrable over A and denote
this limit by [ 4 fdm. For A = X, we write simply [ fdm. It is easy to see that,
if f is m-integrable over X, then it is m-integrable over every measurable subset A
and [, fdm = [ fxadm. If f is bounded on A, then p([yfdm) < |Iflla- mp(A)
for every p € cs(E).

Using an argument analogous to the one used in [6], Theorem 2.1 for scalar-valued
measures, we get the following
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Theorem 4.1 If m € M(R,E), then an f € KX is m-integrable iff, for each
p € cs(E) and each € > 0, there exists an R-partition {A1, Aa,...,An} of X such
that |f(z) — f(y)| - mp(As) < €, for all 1, if the x,y are in A;. Moreover, in this

case we have that .
p (/fdm - Zf($i)m(Ai)) <e.
i=1

Theorem 4.2 Let m € M(R, E) and let f € KX be m-integrable. Then :

1. f is continuous at every x in the set

D= || {o:Npugle)y£0},

pEcs(E)

2. For each p € cs(E), there exists a measurable set A, with my(A€) = 0, such
that f is bounded on A.

Proof :  (1). Suppose that Np,p(z) = d > 0 and let ¢ > 0. There exists an R-
partition {Aj, Az,...,Ap} of X such that |f(x) — f(y)| - mp(A;) < de, if z,y € A,
If x € A, then [f(y) — f(z)| < eforall y € A;.
(2). Let {Ay, As, ..., An} be an R-partition of X such that | f(z) — f(y)|-m,(4;) < 1,
ifx,y€ A;. Let

A= {4 my(4) > 0}.

It follows easily that f is bounded on A and that m,(A€) = 0.

Theorem 4.3 Let m € M(R,E). If f,g € KX are m-integrable, then h = fg is
also m-integrable.

Proof : Let p € cs(F) and € > 0. There are measurable sets A, B such that
mp(A°) = mp(B¢) = 0 and f, g are bounded on A, B, respectively. Let D = AN B.
Then m,(D°) = 0 and there exists a d > 0 such that || f||p, llgllp < d. Now there
exists an R-partition {Aq, Ao, ..., Ap} of X, which is a refinement of {D, D¢}, such
that
|7 (z) = Fly)l - mp(Ai) <e/d and |g(z) - g(y)| - mp(4i) < €/d

if z,y € A;. Let now xz,y € A;. If A; C DS, then |h(z) — h(y)| - mp(4;) = 0. For
A; C D, we have that

|h(z) — A(y)| = |[f(x) — f(W)lglz) + f¥)lg(z) — g(¥)]]
< max{d-|f(z) - f(y), d- |g(z) — g(v)|}

and so |h(x) — h(y)| - mp(A; < e. This completes the proof in view of Theorem 4.1.

Let now m € M(R, E) and let ¢ € K* be m-integrable. Define

mg: R — E, mg(_f-l):]Agdm.
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Clearly m, is finitely-additive. Also, m, is bounded. In fact, let p € cs(E). There
exists a measurable set B such that m,(B¢) = 0 and g is bounded on B. Let

= [lgllz- Let A e R, W) = ANB, Wy = AN B°. Since g is m-integrable, there
exists an R-partition {V1,Va,...,V,} of A, which is a refinement of {W7, W} such
that |g(z) — g(y)| - mp(V;) < 1ifz,y € V;. Let z; € V;. Then

P (/Agdm— };g(a:@)m(vi)) .

If Vi € Wh, then p(g(z:;)m(V;)) < d- myp(X), while for V; C Wa we have that
p (g(zi)m(V;)) = 0. Thus

P (/ gdm) < max{1, d-my(X)}.
A
This proves that my is bounded and hence mg, € M(R, E).

Theorem 4.4 Let m € M(R,E) and let g € KX be m-integrable. If f € KX is
m-integrable, then f is mg-integrable and [ f dmg = [ fgdm.

Proof : Let p € cs(E). There exists a measurable set D, with m,(D®) = 0, such
that f, g are bounded on D. Let d > max{||f||p,|lgllp}. If V is a measurable set
contained in D¢, then p(my(V')) = 0. This follows from the fact that, for A C V we
have that p(g(z)m(A)) = 0. Let now € > 0 be given. There exists an R-partition
{V1,Va,...,Vn} of X , which is a refinement of {D, D¢}, such that

[f(2) = f(y)l - mp(Vi) < €/d, and |g(z)— g(y)| - mp(Vi) < e/d
if 7,y € V;. We may assume that [J_; V; = D. For A€ R, A C V; C D, we have
p( [ 9am) < lola-my(4) < - my(¥0),
and hence (my),(V;) < d-mp(V;). Thus, for z,y € V; C D, we have

[f(@) = f@)] - (me)p(Vi) < d-[f(z) = fy)] - mp(Vi) < e.

The same inequality holds when V; C D€ This proves that f is my-integrable. If
z,y € V; C D, then

P (/fdmg - Z f(mk)my(vk)) &
k=1
Since, for x,y € Vi C D, we have [g(z) — g(y)| - mp(Vi) < ¢/d, it follows that

P (mg(vic} - g(-rk)m(vk)) = E/d'

For z,y € Vi C D, we have

| (2)g(2)=F ()9 ()| mp(Vi) < myp(Vi)-max{|g(@)|]f(x)~F ()] |f W)]-l9(z)—9(x)]} < e
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Since my (Vi) = 0 if V3, C D¢, we get that

P (fgf dm — Zg(xk)f(:ck)m(m) <e
k=1

Also, for 1 < k < n, we have p (f(zr)g(zr)m(Vi) — f(zr)mge(Vi)) < e. It follows

that
p(fgfdm—/fdmg> < &

This, being true for all € > 0, and the fact that F is Hausdorff, imply that

[osim= [ sam,,

Theorem 4.5 Letm € M(R,E), p € cs(E) andx € X. If g € KX is m-integrable,
then

which completes the proof.

N, p(z) = |9(@)] + N p ().

Proof : Let € > 0. There exists an R-partition {Vi, Va2, --,V,} of X such that
la(y) — g9(2)| - mp(Vi) S eify,z € Vi

Claim I : If V' is a measurable subset of V; containing x, then, for each A C V, we
have

p(mg(A4)) < max{e, |g(z)| - mp(V)} = 0.

Indeed, if z € A, then for each y € A we have that |g(z) — g(y)| - mp(A) < €, which
implies that p(mg,(A4) — g(z)m(A)) < € and so

p(my(4)) < max{e, |g(z)| - p(m(A4))} < 6.

In case z € V'\ A, we get in the same way that p(my(V\ 4)) < 6. Also p(m4(V)) < 6,
since z € V. Thus

p(mg(A4)) = p(my(V) —me(V'\ 4)) <0,

and the claim follows.
Claim II. If W is a measurable subset of V; containing z, then for each measurable
set A C W, we have that

lg(z)| - p(m(A)) < max{e, (my)p(W)} = d.
Indeed, if z € A C W, then p(my(A) — g(z)m(A)) < € and so
lg(z)] - p(m(A)) < max{e,p(my(A))} < d.

If x € W\ A, then |g(z)| - p(m(W \ A)) < d. Also g(z)| p(m(W)) < d, and so again
lg(z)| - p(m(A)) < d, which proves the claim.
Now there are measurable subsets V, W of V; containing x such that

mp(V) < Nmp(z)+¢, and (my)p(W) < €4 Ny, p(z).
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By claim I, we have

ng,p(:c) < (mg)p(v) < max{e, \g(:c)l : mp(v)}
< max{e, |9()|[e + Nimp(z)]}.

Taking € — 0, we get that
Ningp(2) < |g(@)| - Ninp(2).
Also
9(z)] - Nimp(2) < 1g(2)| - mp(W) < max{e, (mg)p(W)} < €+ Ny, ().
Taking € — 0, we get that
l9(z)[ - N p(z) < ng.p(ﬂ:),
which completes the proof.

Theorem 4.6 Let m € M(R, E) and let g € KX be m-integrable. If m is T-additive
(resp. o-additive ), then mgy is T-additive (resp. o-additive ).

Proof : Assume that m is 7-additive and let V5 | 0 and p € cs(E) There exists an
A € R such that my(A°) = 0 and ||f||la = d < co. Given € > 0, there exists a ,
such that m,(Vs) < ¢/d if § > d,. For a measurable set V disjoint from A, we have
p(mg(V)) = 0. Thus, for § > 4,, we have

p(mg(Vs)) = p(my(Vs N A)) < |lgllvsna - mp(Vs N A) < d-myp(Vs) < e

This proves that my is 7-additive. The proof for the o-additive case is analogous.

The proof of the next Theorem is analogous to the one given in [8], Theorem
2.16, for scalar-valued measures.

Theorem 4.7 Letm € M(R, E). For a subset Z of X, the following are equivalent:
1. xz is m-integrable.

2. For each p € c¢s(E) and each € > 0, there are measurable sets V,W such that
VCcZcW andmp(W\V) <e.

For m € M(R, E), let Ry, be the family of all A C X such that x4 is m-integrable.
Using the preceding Theorem, we show easily that Ry, is a separating algebra of
subsets of X which contains R. Define

m:Ry — F, ﬁ(A):fXAdm.

The proofs of the next two Theorems are analogous to the corresponding ones
for scalar valued measures (see [8], Lemma 2.18, Theorems 2.22, 2.23, 2.24, 2.26 and
Corollary 2.25 ).
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Theorem 4.8 1. For A€ R and p € cs(E), we have mp(A) = iy (A).
2. m 1s o-additive iff m is o-additive.
3. m 18 T-additive iff m is T-additive.
4: Nuwp = Nege
3. Ry = Rem.

Theorem 4.9 1. If f € KX is m-integrable, then f is also T-integrable and

[fdm= [ fdm.

2. If f € K¥ is m-integrable and bounded, then f is also m-integrable.

Lemma 4.10 If m € M, (R, E), then every Tr-clopen set A is in R,,.

Proof : Let p € cs(E) and € > 0. Consider the collection F of all R-measurable
sets of the form W\ V, where V,\I/W € Rand V C¢ A C W. Then F | 0. As m is
T-additive, there exists an W\ V' € F such that m,(W \ V) < ¢, which proves that
AeR,.

Theorem 4.11 Letm € M, (R, E) and f € KX. If f is bounded and T -continuous,
then f is m-integrable (and hence T-integrable ).

Proof : Without loss of generality, we may assume that ||f|| < 1. Let p € cs(E)
and € > 0. The set ¥ = {x : Ny p(x) > €} is 7gr-compact. Choose 0 < ¢; < € such
that €;.m,(X) < e. There are z1,%2, -+ ,Zn € Y such that the sets

Ay ={z : p(f(z) — flzx)) < a}y k=1,---,n.

are pairwise disjoint and cover Y. Each Ay is mr-clopen and hence it is a member
of Ry. Let Vi, Wi € R be such that V}, € A C Wi and m,(Wg \ Vi) < e. Let
Va1 = (Up=1 V&)¢. Then V,1; is disjoint from Y. Indeed, if z € ¥ N V,41, then
z € Wy, for some k, and s0 N p(z) < mp(Wi \ Vi) < €, a contradiction. As m is
T-additive, we have that my(Vyp41) = SUPsev,,, Vmp(z) < € fnow z,y € V4, i < n,
then

(@) F@)] - mp(Vi) < 1. - mp(X) < e.

Also, if z,y € Vhqy, then |f(z) — f(y)| - mp(Vns1) < e This proves that f is
m-integrable.

Theorem 4.12 Let m € M (R, E). For a subset A of X, the following are equiva-
lent :

1. A€ Rp.
2. A is tp,_ -clopen.

Proof : Clearly (1) = (2). On the other hand let A be 7g,-clopen. Since ™ is
T-additive, it follows (by Theorem 4.11) that x4 is Ti-integrable and hence x4 is
m-integrable (by Theorem 4.9), which means that 4 € R,,.
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Theorem 4.13 Let m € M. (R, E) and consider on X the topology 7z. Then the
map

tm : Co(X) = E, u.m(f}:/fdm—]fdﬁ

s B-continuous. Also, every (B-continuous linear map u : Cp(X) — E is of the
form u = wu,, for some m € M, (R, E).

Proof : Let p € ¢s(F) and G € 2. We need to show that the set

V ={f € C(X) : p(um(f)) <1}

is a fg-neighborhood of zero. Indeed, let 7 > 0. There exists a decreasing net (V)

of Tr-clopen sets with (; —17560)( = (G. Since V5 € Ry, and ™ is T-additive, there
exists a ¢ such that m, (V) < 1/r. Now

Vi={feC(X):lfl <r, Ifllve <1/Imlip} C V.

In fact, let f € V1 and set h = fxy;, g = fxvg. Then

p( [ ham) = ( [ ham) < bl Ty <1
p([odm) =p ([ oam) <im0 <1

Thus p([ fdm) < 1, which shows that V; C V. Since the closure of Ve in B X is
disjoint from G, this proves that V is a Sg-neighborhood of zero. This, being true for
every G € Q, implies that V' is a #-neighborhood of zero and so wu,, is S-continuous.
Conversely let u : (Cp(X), 8) — E be linear and continuous. Since 3 is coarser than
the topology of uniform convergence, it follows that, for each p € cs(E), there exists
a non-zero A € K such that

{f € Go(X) : [IflIl = IA} € {f : p(u(f)) <1}
Let K(X) be the algebra of al 7-clopen subsets of X. Define
piK(X)—E, p(A)=u(xa)

Clearly p is finitely-additive. Also, since |Axa| < |A[, it follows that p(u(4)) <
[A|=!, and so p is bounded. If (V;) is a met of clopen sets which decreases to the
empty set, then xy; — 0 with respect to the topology S and so (V) — 0. Thus
p € M (K(X),E). The restriction m = p|g is in M, (R, E). The subspace F of
Cy(X) spanned by the functions x4, 4 € K(X), is S-dense in Cy(X). Since u and
Um are both S-continuous and they coincide in F, it follows that u = u,;, on Cy(X).
This completes the proof.

Theorem 4.14 Let X be a zero-dimensional Hausdorff topological space and E a
Hausdor(ff locally convex space. Then a linear map u : Cy(X) — E is B-continuous
iff it is Bo-continuous.
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Proof : Let E be the completion of E and let K(X) be the algebra of all clopen
subsets of X. Suppose that u is S-continuous. Then u : (Cy(X),3) — E is contin-
uous. In view of the preceding Theorem, there exists an m € M. (K (X), E) such
that u(f) = [ fdm for all f € Cp(X). Let p € cs(E) and

V = {f:plu(f)) < 1}.

We need to show that V is a @,-neighborhood of zero. By [4], Theorem 2.8, it suffices
to show that, for each 7 > 0, there exists a compact subset ¥ of X and ¢ > 0 such
that

Vi={feC(X):fll <n |Iflly Le}CV

Choose € > 0 such that e-my(X) < land r-e < 1. Theset X; = {x : Npmp(z) > €}
is compact. In the definition of V] take as ¥ the set Xp.. Let f € Vj and A = {z :
|f(z)| < €}. Then mp(A°) = supeac Nmp(z) < €. Now

p(ffdm)ge-mp(X)gl, and p(/ fdm)gr-mp(Ac)gl.
A Ac
Thus Vi C V and the result follows.

Theorem 4.15 Let R be a separating algebra of subsets of a set X and consider on .
X the topology Tr. Then ¢, coincides with the topology induced on S(R) by B, and
by the topology induced by 3.

Proof : If (Vj) is a net of measurable subsets of X which decreases to the empty

set, then xv; | 0 and so xv; i 0. Thus
x:R—(S5(R),B)

is a 7-additive measure. In view of Theorem 3.6 , it follows that ¢, is finer than the
topology induced on S(R) by . On the other hand, let £ be a Hausdorff locally
convex space and let E be its completion. If m € M.(R, E), then m € M. (R, E).
The map

w: O (X) = B, u(f) = f Fidii.

is Bp-continuous. Since 1 = u|g(r), it follows that i : (§(R), B,) — F is continuous
and hence 7 : (S(R),3,) — F is continuous. This implies that ¢, is coarser than
the topology induced on S(R) by £, and the result follows.

Corollary 4.16 The topology ¢+ is polar and locally solid.

Lemma 4.17 Let Z be a vector space over K , D a subspace of Z and 71, T
Hausdor(f locally convex topologies on Z which induce the same topology on D and
for both of which D is dense in Z. If 7 s finer than 71, then 71 and ™ coincide
on Z.
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Proof: Let G = (Z,72) and let G be its completion. The identity map T : (Z,72) —
G is clearly continuous. Let § = T[ p- Since 7y and 7 induce the same topology on
D, it follows that S : (D,7;) — G is continuous. As D is 7y-dense in Z, there exists

a unique continuous extension S (Z,7) — G. Now § : (Z,72) — G is continuous.
Since S =T on D and D is To-dense in Z, it follows that S =T on Z. Thus

Fe=f  (Zm) = 6
is continuous, which clearly implies that 7 is finer than 7 and the Lemma follows.

Theorem 4.18 For any zero-dimensional Hausdorff topological space X, the topolo-
gies B and B, coincide on Cy(X).

Proof :  Let K(X) be the algebra of all clopen subsets of X. Since S(K (X)) is
-dense in Cy(X), the result follows from Theorem 4.15 and the preceding Lemma.

Theorem 4.19 Let A be the family of all pairs (m,p) for which there exists a
Hausdorff locally convex space E such that p € cs(E) and m € M, (R,E). To each
& = (m,p) € A corresponds the non-Archimedean seminorm ||-||n,,, on S(R). Then
¢+ coincides with the locally conver topology p generated by these seminorms.

Proof : Let E be a Hausdorff locally convex space, m € M. (R, E) and p € cs(E).
If g =3k 106x4, € S(R), then

p(m(g)) (Z apm(Ay ) < m}?XIOfH p(m(Ak)) < Mgl Nom -

Thus 7 : S(R),p) — E is continuous and so ¢, is coarser than p. On the other
hand, let (m,p) € A and

V ={g€S(R):p(i(g)) < 1}.
Since ¢ is locally solid, there exists a solid ¢,-neighborhood V; of zero contained in

V. Now Vi C {g: ||gll¥n, <1} In fact, assume that, for some g = o, arxa, €
Vi1, we have that ||g|[n,,, > 1. There exists an z in some Ay, such that

l9(z)| - Nnp(#) = |ek| - Nnp(z) > 1.
There is a measurable set A contained in Ay such that |ag| - p(m(A)) > 1. If

h = agxa, then |h| < |g| and so h € V3, which is a contradiction since p(rh(h))
This contradiction shows that

Vi {g:llgllnm, <1}

Thus p is coarser than ¢, and the result follows.



p-adic Measures Tl

5 (VR)-Integrals

Throughout this section, R will be a separating algebra of subsets of a set X, E a
complete Hausdorff locally convex space and m € M (R, E). For p € cs(E), and
feKX, let
Pl 3oy = S0P [ f(2)] + Nim,p ().
z€X

Let Gr, be the space of all f € K¥ for which ||f|ln,., < oo, for each p € cs(E).
Bach [[.[|n,,, 15 a non-Archimedean seminorm on Gy,. We will consider on Gy, the
locally convex topology generated by these seminorms.

Lemma 5.1 Ifg=37_; arxa, € S(R), then

p (Z akm(Ak)) < 19/l Nom -
k=1

Proof : We first observe that

Ifg=a- xa, where ¢ € K and A € R, then

pla-m(A)) <|a| -mp(A) = |af sup N p(z)
TEA

sup [g(z)| - Nenp(x) = [|9l| Npm -
zeX

In the general case, we may assume that the sets Az, & = 1,...,n, are pairwise
disjoint. Then

n
p| D ar-m(Ax) | < max|ag| - mp(Ar) = max sup |9(2)] - Nnp(x) = |9l -
Facee ke k TEAL

Lemma 5.2 If we consider on S(R) the topology induced by the topology of G,
then

w:SMR)—=FE, w(g = /gdm
18 a continuous linear map.

Proof : 1t follows from the preceding Lemma.

Let now S(R) be the closure of S(R) in G, and let

(R) = E

Cn

o
be the unique continuous extension of w.

Definition 5.3 A function f € K¥ is said to be (VR)-integrable with respect to m

if it belongs to S(R). In this case, W(f) is called the (VR)-integral of f, with respect
to m, and will be denoted by (VR) [ fdm. We will denote by L(m) the space S(R).
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Theorem 5.4 If f is (VR)-integrable, then, for each p € cs(E), we have
p(vm [ fdm) < 1o
Proof : There exists a ne (g;) in S(R) such that gs — f in S(R). Then

VR [ fim=tim [ gsdm, and Ngslln,, = 17l

" ( f g dm) < losllno,

Theorem 5.5 The space Gy, is complete and hence L(m) is also complete.

Since

the result follows.

Proof : Let (fs) be a Cauchy net in G,,, and let

A4 = U 12 1 Dl > 0}
pecs(E)

Let z € A and choose p € cs(E) such that Np, ,(z) = d > 0. Given € > 0, there
exists a 6, such that | fs — fslln,,, < deif 6,8 > §,. Now, for 6,8 > 6,, we have
|fs(x) — fs:(z)| < e. This proves that the net (f5(x)) is Cauchy in K. Define

f(z) =limf5(z), If zeA

and f(z) arbitrarily if z ¢ A. We will show that f € G, and that f5 — f. Indeed,
given p € ¢s(E) and ¢ > 0, there exists 6, such that

|fs(z) — fsr ()] - N p(z) <€

for all z and all §,6" > 6,. Let now § > §, be fixed. If z € A, then taking the limits
on ¢', we get that |f5(z) — f(z)| - Nmp(z) < €. The same inequality also holds when
xz ¢ A. Thus, for all § > 4,, we have

sup ‘fé(x) - f(a:)l : ‘Nm,p(m) =< €,
zeX
It follows from this that , for all z € X, we have

|f(@)] - Nenp(z) < max{e, || fo, | 5 }

which proves that f € Gy, Also, ||f — fslln,, < € for 6 > §,. Hence f5 — f and
the proof is complete.

Theorem 5.6 For a subset A of X, the following are equivalent:

1. xa is (VR)-integrable.
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2. For each p € ¢s(E) and each € > 0, there exists V € R such that Ny, p, < € on
AAV.

3. For each p € cs(E) and each € > 0, there exists V € R such that

V (1 K = AU K

Proof : (1) < (2). The proof is analogous to the one given in [13], Lemma 7.3 for

scalar valued measures.
(2) & (3). It follows from the fact that, for V € R, VN X, = AN X, iff
Nmp<eon AAV.

Let now R,, be the family of all subsets A of X for which x4 is (VR)-integrable
with respect to m. It is easy to see that Ry, is a separating algebra of subsets of X
which contains R. Let T, be the zero dimensional topology having R, as a basis. In
view of Theorem 2.5, for all p € cs(E) and all € > 0, the set X, = {z : Nmp(z) > €}
is 7-compact. Since A € Ry, iff, for all p € cs(E) and all € > 0, there exists V € R
such that VN X, = AN X, it follows that X, is T, -compact. Also, since 77
is Hausdorff, 7z and 75  induce the same topology on X, .. Now we define

m: Ry — E, m(A)= (VR)] XA dm.
A
Clearly 7 is finitely-additive. Also 72 is bounded since, for each p € cs(E), we have

p(m(A4)) < i‘élj Ni p() < myp(X).

Thus 7 € M (R, E).

Lemma 5.7 If V € R, then mp(V) = my(V).

Proof : 1t is clear that m,(V) < /,(V). Suppose that m,(V) > 8 > 0. There
exists A € Rm, A C V, p(m(A)) > 0. Since p(f(A)) < sup,eq Nmp(2), there exists
x € A such that Ny p(z) > 0 and so mp(V) > Npp(z) > 6. This proves that
mp(V) = M, (V) and the Lemma follows.

Lemma 5.8 Np,p = Niyp.

Proof :  Since mp(V) = mp(V) for V € R, it follows that Npp > Np,p. Assume
that there exists an z such that Ny p(z) > 6 > Nj,(z). Let z € A € Ry, be such
that m,(A) < 0. Let Y = X, ¢ and let V € R be such that VNY = ANY. Since
z € ANY, we have that x € V and so mp(V) > Nppp(z) > 0. Let DeR, DCV
be such that p(m(D)) > 8. Now p(m(D N A)) < m,(A) < 6 and hence

p(m(D)) = p(m(DNA%)) < sup Npy(y).
yeD\A

But, for y € D\ A, we have that Np,(y) <8 since D CVand ANY =V nY.
Thus 8 < p(m(D)) < 8, a contradiction. This completes the proof.
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Lemma 5.9 For A C X, we have A € Ry, iff A is T, -clopen.

Proof : Clearly every A € Ry, is T, -clopen. On the other hand let A be TR~
clopen and let p € ¢s(E), € > 0. Since 7 and Tp, induce the same topology on
Xpe, theset G = A[) X, is clopen in X, ¢ for the topology induced by 7. For each
z € G, there exists an A; € R such that z € A; | Xpe C G. As G is 7r-compact,
there are =1, 2, ..., 7, € G such that

n
G=JAnNXpe=VNX,,
k=1

where V' = (J}_; 4z, € R. In view of Theorem 5.6, A is in R,, and the result
follows.

Theorem 5.10 7 € M, (R, E).

Proof : Let Abe a family in R,, which decreases to the empty set and let p € cs(E),
€>0,Y = X, Foreach A in A, there exists B € R such that BNY = ANY.
Let

B={BeR:JAc 4L, ANY =BnY}

It is easy to see that B | 0. Since m € M, (R, E), there exists B € B such that
mp(B) < e Let A€ Abesuchthat ANY =BNY. Ifz € A4, then z ¢ Y and so
Nmp)x) < e If G € Ry, is contained in A, then

p(m(G)) < sup Ny p(z) < ¢
zeG

and so 1, (A) < €. This proves that

A}léi}d mp(A) =0

and so m € M, (R, E).
Lemma 5.11 If g € S(R,,), then for each p € cs(E) and each € > 0, there exists
an h € S(R) such that [|h — g||n,,, < €.

Proof :  Assume that g 7 0 and let A;, A, ..., A, be pairwise disjoint members
of R, and non-zero scalars aj,om,...,a, such that g = >0 apxa,. Let r =
maxy |ag|. For each k, there exists a By € R such that N, < €/7 on A AB.
Since

loexay, — CexBllNmp < lokl - sUD  Ninp(z) <o
TEALAB

it follows that [|h — g||n,,, < €.

Using Lemmas 5.7 and 5.11, we get the following
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Theorem 5.12 A function f € KX is (VR)-integrable with respect to m iff it is
(VR )-integrable with respect to . Moreover

(VR)ffdm: (VR)/fdm

Theorem 5.13 If f € K¥ is m-integrable with respect to m, then it is also (VR)-
integrable and

/fdm:(VR)/fdm.

Proof : Let p € cs(E) and € > 0. There exists a R-partition {V7,V5,...,V,} of X
such that |f(z)— f(y)| - mp(Vi) <eifz,y € Vi. Let z € Vo and g = > p_; F(zk)XW -
For = € V)., we have

|f(z) = g(@)| - Nmp(2) = [f(z) = f@e)] - Nmp(x) < |f(2) = flzp)] - mp(Ve) <e.

This proves that f is (VR)-integrable. Also p ([ fdm — [gdm) < € and

p(R) [ fam= [gam) = (WR) [~ gydm) <15 - slv,., <<

Thus
P(ffdm(VR)/fdm) de

Since F is Hausdorff, it follows that

/fdm—(VR)/fd.m.

Theorem 5.14 Let Y be a zero-dimensional topological space and f : X — Y.
Then f is 75 -continuous iff, for each p € cs(E) and each € > 0, the restriction of
[ to X, . is TR~ continuous.

and the proof is complete.

Proof :  Since tr and T, induce the same topology on X, the necessity of the
condition is clear. On the other hand, assume that the condition is satisfied and
let Z be a clopen subset of Y. We need to show that f=1(A) is T4, -Clopen, or
equivalently that f~1(A4) € R,,. Let p € cs(E) and e > 0. The restriction h of f to
Xp.e is Tr-continuous. Thus

G=fHA) N Xpe =h7HA)

is clopen in X, . for the topology induced by 7z. For each x € G, there exists V; € R
such that z € V; (X, C G. Since G is Tr-compact, there are z1,z2,...,%, in G
such that .
g = | Ve 0 X
k=1
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If V =Jp_q Va, € R, then
VX = A D&
In view of Lemma 5.9, we get that f~1(A4) € R,, and we are done.
Theorem 5.15 Let m € M-(R,E) and f € KX. Then, f is (VR)-integrable iff :

a) f is 5 -continuous.
b) For each p € cs(E) and each € > 0, the set

D= {z:|f(z)] Nmp(x) Z €}
is Tz -compact.

Proof : Assume that f is (VR)-integrable and let p € cs(E) and e > 0. There exists
a sequence (gn) in S(R) such that ||f — Inll N, — 0. For z € X, ., we have that

|f(2) = gn()| < Ve [If = gnllvpm, — 0

uniformly. Since each g, is Tr-continuous , it follows that f J Xp. 18 Tr-continuous
and so f is T, ~continuous. Also, given ¢ > 0, there exists a g € S(R) such
that ||f — glln,,, < e Let {V1,V5,...,V,} be pairwise disjoint members of R and
a1, a2, .., 0, non-zero scalars such that g = % )'_; axxv,. Now

D={z:9(2)| - Nmp(z) 2 e} = [ JIVi N {z: Nnp(@) > e/ |el}],
k=1

and so D is Tp -compact. Moreover
D= {z:|f(z)| - Nmp(z) > €}.
Conversely, assume that the conditions (a), (b) are satisfied. Let p € cs(E), € > 0
and
D ={z:|f(z)] - Npnp(z) = c}.
For each z € D, there exists an A, € R,, such that
z € Az C{y: |f(y) — f(2)] < ¢/mp(X)}.

By the Rm-campactness of D, there are y1,y2,...,yn € ¥ such that D C |J7_; Ay,
Now, there are pairwise disjoint sets Vi, Va,..., Vi in R,, such that D C U;\;l Vi
and each V; is contained in some A4,,. Let

N
zi €Vi, = flz)xy;
Jj=1
Ifz € Vj, then
|f(z) = 9(@)] - Nmp(@) = |f(z) = f(2;)] - N p(@) < llmllp - ¢/ [mllp =,
while, for z ¢ Ujil V; we have g(z) = 0 and = ¢ D, which implies that

|f(z) — g(z)| - Nmp(z) = | f(z)| - Nipp(z) < €.
This proves that f is (VR)-integrable with respect to m and hence it is (VR)-
integrable with respect to m. This completes the proof.
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6 The Measure my

In this section we will assume that E is a complete Hausdorff locally convex space,
R a separating algebra of subsets of a set X and m € M.(R,E). Let f € KX be
(VR)-integrable with respect to m and define

s : Rm — B, ﬁaf(A)—(VR)Lfdm:(VR)fXAfdm.

Then, for each p € cs(E), we have

p(mg(A)) <sup|f(x)| - Nmp(z) < Hf“N’rn_‘pi

z€A

and so 1y is bounded and clearly finitely-additive. Also 7y is 7-additive. Indeed,
let (As) be a net in R, which decreases to the empty set and let p € cs(E), e > 0.
There exists a ¢ € S(R) such that || f — glln,,, < e If g =37 arxv,, where
V1, Va, ..., V, are pairwise disjoint members of R, then

g(As) =D axi(Vi N Ag).
k=1

Since As N Vj | @ and m is 7-additive, there exists &, such that p(mg(4s)) < € if
6 > d,. Also

p(mg—g(As)) S If ~ 9llNm, <€
Thus, for § > d,, we have that p(my(As)) < €, which proves that my € M. (R, B).

Lemma 6.1 Ifg € S(R), then Ns, (x) = |g(x)| - Nmp(x).

Proof : Let g = 3°p_; axXv,, where {Vi,Va,...,Vp} is an R-partition of X. Let
z € Vi and h = agxy,. If A € Ry, is contained in Vj, then

g(4) = n(4) = o (VR) [ xadm = g(e)mn(4).

Thus
Ny o () = [9(2)| - Np(x) = |9()| - Nmp().

Lemma 6.2 Let f,g € KX be (VR)-integrable with respect to m. Then for each
V € Ry, we have
|(Mg)p(V) — (Mg)p (V) S |f = 9llNmp-

Proof :  Assume (say) that (/f),(V) — (7g)p(V)] = 0. Given € > 0, there exists
A € R, contained in V such that (my)p(V) < p(myp(A)) + e Now
0 < (Mmy)p(V) — (g )p (V) e +p(ms(A)) — p(my(A))
< et p(rng(A) —1mg(A))
e+p(s—g(A) S e+ |f — 9l

A

and the Lemma follows taking e — 0.
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Lemma 6.3 Let f,g € KX be (VR)-integrable with respect to m. Then

|N‘rﬁf,p($) - thg,p(x)l S ”f - g”j\rm,p'

Proof - Suppose (say) that 0 < N, p(x) — N, p(z) and choose a V € R,
containing x such that (7, (V) < N, p(z) + €. Now

0= Ningp(€) = Ning p(2) < (7)p(V) = [(Fg)p(V) — €] < €+ [|f — gl Nom -

Taking € — 0, the Lemma follows.
Theorem 6.4 If f € KX is (VR)-integrable with respect to m, then
thf,p(m) = jf(x)j ) Nm,p(w)-

Proof : Given € > 0, there exists a g € S(R) such that || f —g||w,, , < ¢. By Lemma
6.1, we have Np,, . (z) = |9(z)| - N p(z). Also

Ha(@)| - Nmp(z) = |f(2)] - Nemp(x) | < |g9(2) — f(2)] - N p(z) < €.
Thus
|Noivg o= F (@) Nemp(2)] < |Nisvy p(2) = N p (@) |+ |9(2) |- Nen p (2)— | £ (2) |- N p () | < 2.

As € > 0 was arbitrary, the Theorem follows.

Lemma 6.5 If f € KX is (VR)-integrable with respect to m and h € S(R), then
hf is (VR)-integrable.

Proof : Let ¢ > 0, p € cs(E), d > ||h||. Choose g € S(R) such that ||g — s %
e/d. Now gh € S(R) and ||hf — gh|N,,, < €, which proves the Lemma.

Theorem 6.6 Let f € KX be (VR)-integrable with respect to m. If g € KX is
(VR)-integrable with respect to s, then gf is (VR)-integrable with respect to m
and

(VR)/gfdmz (VR)/gdﬁzf.

Proof : Given p € cs(E) and € > 0,let h € S(R,;) be such that [|g — Al|n.,. < e

™ p

Let d > [|h[| and choose fi € S(R) such that ||f — fi|ln,., < e/d. If V € Ry, then
/XV d?’ﬁf = ﬁ’.‘,f(V) = (VR)/va dm

and so [ hdmys = (VR) [ hf dm. Now

o (vR) [gan; - [hamy) < g~ bl <<
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If fo = f— fi, then
”hfz“N'm,p S € a‘nd Hg - h‘)f”j\r‘m,p = Hg - h“Nﬁzf,p S €.

It follows that ||gf — hfil|n,,, < €. Since hf; is (VR)-integrable with respect to m,
we get that gf is (VR)-integrable with respect to m. Also,

P ((VR)/fgdmw (VR)fhfdm) < Nl = hfllwn, < <.

It follows that

P ((VR) /fg dm — (VR)/QdﬁLf) <,
which clearly completes the proof.

Theorem 6.7 Let f,g € KX be (VR)-integrable with respect to m. If g is bounded,
then :

1. g is (VR)-integrable with respect to .
2. gf is (VR )-integrable with respect to m.
4. (VR) [ gf dm = (VR) [ gdrn;.
The same result holds if we assume that [ is bounded.

Proof :  Assume that g is bounded. In view of the preceding Theorem, we only
need to prove (1). By Theorem 5.15, g is T, -continuous. As g was assumed to be
bounded, we get that g is integrable with respet to /¢, which implies that it is (VR)-
integrable with respect to the same measure (by Theorem 5.13). Thus (1) holds. In
case f is bounded, let d > || f(| and choose h € S(R) such that ||g — Al|n,,, < €/d.
Now

g = hlln, , = lltg = W) fly < &

and so the result follows.

Theorem 6.8 Let f € KX be (VR)-integrable with respect to m and let g € KX be
m-integrable. Then :

1. g is (VR)-integrable with respect to Thy.
2. gf is (VR )-integrable with respect to m.
3 (VR) [ gf dm = (VR) [ gdm;.

Proof : Let p € cs(E) and ¢ > 0. Since g is m-integrable, there exists a V' € S(R),
with mp(V¢) = 0, such that ||g|v = d < co. Let g1 = gxv. By the preceding
Theorem, there exists an h € S(R,,) such that ||g; — hHNmf,p < e For z € V¢, we
have

lg(z) = h(@)| - Ny , () = |f(2)(9(2) — h(2))] - Nimp(2) = 0.

Thus ||g — Al Npgp S € This proves (1) and the result follows.
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7 The Completion of (S(R),¢,)

In this section, R will be a separating algebra of subsets of a non-empty set X. We
will equip X with the topology 7. Asin [ 9], we will denote by X*) the set X
equipped with the zero-dimensional topology which has as a base the family of all
subsets A of X such that ANY is clopen in Y for each compact subset ¥ of X. We
will prove that (Cb(X(k)),ﬁg) coincides with the completion F' of F = (S(R), ¢r).
As F'is a polar Hausdorff space, its completion is the space of all linear functionals
on F' = M(R) which are o(F', F)-continuous on ¢--equicontinuous subsets of
M, (R) (see [10 ]). The topology of F' is the one of uniform convergence on the
¢r-equicontinuous subsets of M.(R). Since ¢, is the topology induced on S(R) by
B, and since 3, and the topology 7, of uniform convergence have the same bounded
sets, it follows that the strong topology on F” is the tropology given by the norm
m > [|m].

Theorem 7.1 The comp[etwn F of F is an algebraic subspace of the second dual
F". The topology of F is coarser than the topology induced on F by the norm topology
of F".

Proof :  Let u be a linear functionmal on M;(R) which is ¢(F’, F)-continuous on
¢r-equicontinuous subsets of M, (R). Then u is norm-continuous. Indeed, let (m,,)
be a sequence in M;(R) with ||my|| — 0. The set H = {m, : n € N} is uniformly
T-additive. In fact, let (V) be a net in R which decreases to the empty set and let
€ > 0. Choose n, such that ||m,|| < €if n > n,. If §, is such that |m,|(V;) < €
for all 6 > §, and all n = 1,2,...,n,, then |m|(Vs) < € for all m € H and all
§ > do. In view of Theorem 3.10, H is ¢,-equicontinuous. As [ gdm, — 0 for all
g € S(R), it follows that u(m,) — 0 and so v € F”. The last assertion is a con-
sequence of the fact that every ¢ -equicontinuous subset of M, (R) is norm bounded.

Let K(X) be the algebra of all 7r- clopen subsets of X. For m € M, (R, E), let
m:K(X)—-K, mA) = fXAdm-
Then m € M, (K(X)).

Lemma 7.2 If H is a uniformly T-additive subset of M, (R), then the set
H={m:meH)
is a uniformly T-additive subset of M, (K(X)).

Proof : Let (V;) be a net in K(X) which decreases to the empty set. Consider
the family F of all A € R which contain some V5. Let A;, 4y € F and let 61,69
be such that Vi, C A;, for i = 1,2. If § > 61,8, then Vs € A = Ay N As, which
proves that F is downwards directed. Also, (VF = 0. Indeed, let z € X and
choose Vs not containig x. There exists a B € S(R such that z € B C V§. Now
Vs C A= B®and x ¢ A, which proves that ()7 = 0. As H is uniformly r-additive,
there exists A € F with |m|(A) < e for all m € H. If V; is contained in A, then
|| (Vs) < |m|(A) = [m|(A) <, for all m € H, and the Lemma follows.
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Theorem 7.3 (Cy(X),5,) is a topological subspace of F.

Proof : Let f € Cy(X). Without loss of generality we may assume that || f|| < 1.
For each m € M;(R), the integral [ fdm exists. Thus f may be considered as a
linear functional on M,(R) = F’. Let H be an absolutely convex ¢,-equicontinuous
subset of M;(R) and let (ms) be a net in H which is ¢(F’, F)-convergent to zero.
We will show that [ fdms — 0. As H is ¢,-equicontinuous, we have that d =
Supep |Im|| < co. By the preceding Lemma, the set H is a norm-bounded uniformly
T-additive subset of M, (K (X)). By [4], Theorem 3.6, given € > 0, there exists a
compact subset ¥ of X such that |m|(V) = |m|(V) <cforallme HandallV € R
disjoint from Y. For each z € Y, there exists an A, € R containing x and such that

Az CH{y : |f(y) — f(z)] < e/d}.

By the compactness of Y, there are 1, 23, ..., 2, in Y such that Y € J?_; As,. Now
there are pairwise disjoint sets By, Ba, ..., By in R covering Y such that each B; is
contained in some A, . Let y; € B; and g = Zfil fyi)xp,- Forz € B= U,fil B,
we have that |f(z) — g(z)| < ¢/d and |m|(B¢) < € for all m € H. Let §, be such
that | [ gdms| < € if § > §,. Since

/jg(f*g)dma

it follows that | [ f dms| < € for all § > §,. This proves that f € F.

Since 3, is polar, it follows from [4], Theorem 3.6, that 3, is the topology of uni-
form convergence on the family of all norm-bounded uniformly 7-additive subsets
of M;(K(X)). Let Z be such a subset of M-(K (X)) and let H = {m|p : m € Z}.
Then H is uniformly 7-additive subset of M, (R) and

< [ml(B%) <,

<d-lf=glp < and |[ (7-g)dms

sup [[ull = sup [jm] < oo.
LEH mez

If H° is the polar of H in F' and Z° the polar of Z in Cy(X), then Z° = H° N Cp(X).
Now the result follows from this, the preceding Lemma and Theorem 3.10.

Theorem 7.4 The completion of the space F' = (S(R), ¢.) coincides with the space
(Ob(X(k)a )60)'

Proof : By the preceding Theorem, (Cy(X),5,) is a topological subspace of F.
Thus F' coincides with the completion of (Cy(X), 3,). Now the result follows from
[8], Theorem 4.3, in view of [9], Theorem 3.14

Let now E be a complete locally convex Hausdorff space and let m € M, (R, E).
In view of the preceding Theorem, there exists a unique [3,-continuous extension wu
of 11 to all of Cy(X®). We will show that, for all f € C,(X*®)) we have u(f) =
(VR) [ fdm.

Theorem 7.5 Let m € M, (R, E), where E is a complete Hausdorff locally convex

s
e u: (Cy(XH¥)), 5) — E

87
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is the unique continuous extension of i, then u(f) = (VR) [ f dm.

Proof : Let f € Cy(X®)). Without loss of generality, we may assume that N7l < 1.
Let T' be the set of all v = (p,¥,n), where p € cs(E), n € N and Y a compact
subset of X. We make I into a directed set by defining (p1, Y1,n1) > (pa, Y3, n9) iff
P1 = P2, Yo C Y7 and ny > ny. Let

B={geC(Xx®):|lg|l < 1}.

On B, 8, coincides with the topology of uniform convergence on the compact subsets
of X®) (equivalently on compact subsets of X by [9], Corollary 3.14).
Claim: For each v = (p, Y, n), there exists a g, € S(R) , gy € B, such that

If=gylly £1/n, |f = gyl < 1/n

Indeed, choose € > 0 such that € < 1/n and €- |[m||, < 1/n. The set
Z=Y| J{z: Nmp(z) > ¢}
is compact. For each y € Z, there exists V, € S(R) containing y and such that
VyNZ C{z:|f(2) - f(y)l <e}.

By the compactness of Z, there are pairwise disjoint W1, Wa, ..., Wy in S(R) cov-
ering Z and such that each W; is contained in some V. Choose z;, € W}, and take
= Ej:\;] f(z)xw,. Then g, € B. f z € Y, then |f(z) — g4(z)| < € < 1/n and so
If—gylly £1/n. Also,ifz e W = Ui\r:l Wy, then

[f(®) = gy(@)] - Nem () < €+ [Iml, < 1/n,

while for z ¢ W we have that Ny, ,(z) < e < 1/n. Thus ||f — 9yl N, < 1/n, which
proves our claim.

Now the net (gy) is in B and converges to f with respect to the topology of uniform
convergence on compact subsets of X and so (g,) is 8,-convergent to f, which implies
that u(f) = limwu(g,). On the other hand, (g,) is contained in G,, and converges to
f in the topology of Gy, Thus

u(f) = limu(gy) = lim'/g7 dm = (VR) /fdm.
This completes the proof.

Theorem 7.6 Let X be a zero-dimensional Hausdorff space and let A be the family
of all pairs (m,p) for which there ezists a Hausdorff locally convex space E such that
p € cs(E) andm € M, (K(X), E), where K(X) is the algebra of all clopen subsets of
X. Then the topologies 8 and (3, on Cp(X) coincide with the locally conves topology
p generated by the seminorms || - (N, ,, (m,p) € A.
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Proof :  As it is shown in the proof of the preceding Theorem, the space F =
S(K(X)) is p-dense in Cp(X). Also F is dense in Cy(X) for the topologies § and
Bo. In view of Theorems 4.15, 4.18 and 4.19, the topologies 3,, 5 and p coincide on
F'. Also, p is coarser than f,. Indeed, let (m,p) € A and

V={feG(X): [fllNm, <1}

Let r > 0 and choose 0 < ¢ < 1/r such that € - my(X) < 1. Theset Y = {z :
N p(X) > €} is compact. Moreover

Vi={feC(X):Ifll <7 Iflly <€}

is contained in V. In fact, let f € V1. If x € Y, then | f(2)|- Ny p(z) < e-mp(X) < 1,
while for z ¢ Y we have |f(z)| - Npnp(z) < re < 1. Thus || f||n,., <1,ie feV.

This, being true for each r» > 0, implies that V' is a J,-neighborhood of zero. Now
the result follows from Lemma 4.17.
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